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I. Introduction

Consider a (linear or nonlinear) dynamical system with a wide-band noise

input. It is often of considerable interest to approximate such systems by

diffusion models so that, e.g., Markov process techniques can be used. In I1 -

41, [71, several powerful methods for doinq this have been developed.

Roughly, the input noise process is parametrized by t and as t + 0, the bandwidth

(BW) - -, while the power per unit BW converges to a constant. The limit process

is found via methods of weak convergence theory. The methods are particularly

useful when the system noise (and/or signal) is processed nonlinearlyi i.e.,

only nonlinear functions of the noise appear in the dynamics. The problem is

often not what the so-called correction term might be, but what the entire

form of the limit is, and this is not usually easy. In fact, when nonlinear

functions of the noise appear, the notion of "correction term" loses much of its sense.

In this paper, the system of Figure 1 is dealt with.

- F(v E) + DYE,

(1.1)
-L E E E C r

y sign u, u =s + - G(v'), v (t) E R,£

where n (-) is a scalar-valued wide-band noise input process. Conditions

on F(O), n (-) and G(-) will be given below. The main result is that as c - 0

(BW * -), the measures of (v (.)) converge to those of v(.) where v(.) satisfies

the It8 equation

(1.2) dv - F(v)dt + LDIXG ) (/ 2 /) dt + v2 In 2/a dB],

where B(') is a standard Brownian motion and L, a, a will be defined below.

Roughly, "a" is related to the correlation function of the n()/(jn(t1 2) I/2

and a2 is the intensity of the spectrum of n (.) in any band [0,BI for smll c.I-
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If, in the system of Fig. 1, the saturator and gain L were replaced by a

gain K, then the limit would be (follows from the method of this paper)

(1.3) dv - F(v)dt + KD[(s-G(v))dt + /2i db],

I
where for the noise modelused for (1.1), R 2 /a. There is no so-called

"correction term". Owing to the form of the saturator function, the formal I
technique of Stratonovich is inapplicable.

The example is offered to illustrate what can be done with one particularly

annoying but useful nonlinearity. The basic method is widely applicable. The J
scheme is unrelated to statistical linearization, which in fact is not con-

cerned directly with approximating processes.

Before proceeding°, compare (1.2) and (1.3) for the case when the feedback

-G(' is supposed to be stabilizing (i.e., when the system is designed tom

the error s(t)-G(v Ct)) small. In (1.2), the term in the dynamics whicz-

involves the error is proportional to 1/c, and in (1.3), the noise term is

proportional to a. Thus for small a, we expect the limiter to enhance stability

without increasing the noise efeects, an important point to note. For large 0, I

the limiter does not seem to be helpful. A simulation comparison of the "pro-limit"

with the limit for a somewhat different problem (a phase-locked loop with a satur-

ator) suggests that the limit (C * 0) results are often the "worst" case, in that

(for exanle) the limit wman square error often increased to the limit value as

£ * 0. (They also suggest that often the limit process is approached quite fast

(as measured, say, by the mean square value of the input to the limiter) as r - 0.)

*a do not kn the extent of applicability of this rule - but it seem to hold -I

ftwnently. len it does hold, the limit results can provide useful upper bounds,

and system isprovements suggested by the form of the limit might well be improvements - I
F!

-..-- ~---
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for the pre-limit" case also. Unfortunately, it is not usually possible to get

approximate diffusion processes where the BW is not large - so, even if it is not

large, the results for large BW might be a useful guide to the qualitative behavior.

Reference [5] contains some applications to problems in communications

theory of the same general idea. But owinq to the unbounded nature of the noise

and the form of the discontinuity and feedback, the problem here is harder

and the analytical details different.

Section II gives specific assumptions. The main background theorem and

some comments on weak convergence appear in Section III, and the convergence

{v (-} C v(.) is proved in Section IV. A'similar method would be used with

other nonlinearities.

I

II. Model Assumptions

1. The noise model. Let z(') denote a stationary Gaussian process with

correlation function o2 exp -ajIT, a > O,and set nE(t) - zc(t)/E, where

z = ZtC ). As c -* 0, the spectral density of n (.) converges to 2a 2/a

on any finite interval. The scaling is a convenient and common way of getting

a noise process n C) whose spectrum converges (as c * 0) to that of a white

noise with a constant power/unit bandwidth. For other correlation functions

the "2 n 2 in (1.2) is replaced by something slightly different. We use

the noise form only to facilitate the evaluation of the coefficient of dB(')

in (1.2). The Gaussian assumption simplifies the proof that certain integrals

converge - but is not essential.

2. The limiter gain If C7 L, a nunber not depending on c, then

as c -0 , the "increased wildness" of nL(.) essentially wipes out the saturator -

I
-7---, ,,'= ..-- ii mn ]n
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replacing it by an open circuit. Thus L must increase as c decreases. In

any particular fixed practical system, one particular value of L will be used.£

But as the bandwidth - -, this value of L will have to increase (see proof in£

Section IV) and eL will have to converge to a non-zero number. So we use£

L - L/.C

3. Other assumptions. G(.), F(-) are continuously differentiable and J
the solution to (1.2) is unique in the weak sense. s() is right continuous

and uniformly bounded on [0,-). The method is most easy to use if the functions I
are smooth. The analysis will be done with ga(.) replacing g(-) - sat(.),

where the piecewise linear ga (-) is defined in Fig. 2. We then get the result

{v£( - ) } H v(-) as c - 0, then a - 0.

III. Weak Convergence; A Convergence Theorem

Tightness. Let Dr [0,-) denote the space of Rr-valued functions on [O,m)

which are right continuous and have left-hand limits. A certain topology

called the Skorokhod topology ([61, section 14) is usually put on Dr. The

process v 0) is considered to be a random variable with values in Dr [0,) and

induces a measure P on it. (P E or {vEC()} is said to be tight iff for

each 6 > 0 there 'is a compact K6 E Dr[O,_) such that P C (d> 1-6, all C. I
{vC(-)} is said to converge weakly to a process v(') with paths in DrI0,.) and I
inducing measure P on it iff for each bounded real-valued function gC.) on

Dr[W,-), fq(w)dP (s) * fq(w)dfw) as e * 0. Thus weak convergence is a I

generalization of convergence in distribution. It is the appropriate form of

convergence for our problem. The tightness condition for (v¢()) will hold I
under our assmptions. 3

.
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Truncated processes. The actual technical proofs of tightness and weak

convergence are easier if the processes {vC (-)) are bounded. DefineI
(3.1) D . (v,N = [F(v )+Dy ,N]b( v  y L g (uEN

I,N C VE ,NU =s + n - G(

where bN (v) = for v SN = {v: Ivj<N}, bN (v) = 0 for v SN+l and bN (v) E [0,11

I and has third derivatives that are bounded uniformly in v and N. If we can

prove convergence for {v C'N(-), E-0) for each N, then Theorem 1 says that we

can prove it for (1.1). Thus, the truncation is purely technical and does not

affect the result.

fDefinitions. Let A denote the infinitesimal operator of the diffusion (1.2).
Let 'N denote the a-algebra induced by (vE'N(s),n(s),s<t) and EC N the cor-t -t

responding conditional expectation. Actually ,N and EEt N depend on a-also.
t t

But we usually suppress the a affix. Let ' be the class of measurable (w,t)

functions such that if g(-)F *', then Ejq(t+6)-g(t)I * 0 as 6 + 0 and

sup Ejg(t) < - and g(t) depends only on (v cN(s),n (s),s<t). We say p-lim. 0 f -

0 iff sUPS,t* 6 (t[ i& and Ejf6(t)j -* 0 as 6 * 0. Define an operator A and its
N AndN,

domain )(A N as follows qE P9(ic 'N) and Ag - q iff g,qEd' and

E ,N g(t+6)-g(t)
p-lim E6 - q(t) - 0.

The following theorem is Theorem 1 of 21, adapted to our case. 50 denotes

the set of continuous real-valued functions on R x (0,-).!
I
I.

-wa imm mmsmm m
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Theorem 1. Let the equation (1.2) have a unique weak-sense solution. Fix N.

For each f(.) e a dense set (sup norm) in ^0, let there be a sequence

{fEN(.)}E S satisfying the following:

(3.2) p-lir IfLN(t) - f l v N(t),t)I - 0,
C-O
C%-O

(3.3) fCN(.) ( ,

(3.4) p-lim ji o'N f|.N (AN4)f(CIN(t)t)I
E-0

where AN is the infinitesimal operator of some diffusion process and the coeffic-

ients of AN and A are equal for vE SN* Then if {VC'N(.)l is tight for each N,

{vE()} 4 v(-) weakly.

Comment. Tightness is not hard to prove here. See comments at the end

of the proof of Theorem 2, which applies Theorem 1 to our case (1.1). Given

f(*,*), the main problem is to find the fN(.) and to verify (3.2) - (3.4)

(and ultimately to prove tightness). The method used here and in [11, [21 is

similar to the averaging method used in (3). We choose the form fdIN(t) 

f(v (t),t) + f' N(t) + f2' (t), where f WN(t) is chosen so as to "average out"1 2 1

certain noise-dependent terms in A'Nf(vc'N(t),t), and fE'N(t) is chosen to
2

"average out" certain noise-dependent terms which result from applying AN

to f'N(t). In the proof lim means lim lima, 0 .1 00 C.O

-1

* 1
I i .g
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IV. The Convergence Theorem

fTheorem 2. Under the assumptions in Section II, {v"(.) } converges weakly to

v(-) as E -* 0 and then a -* 0.I
Proof. Let 0 the subspace of of functions whose mixed partial

derivatives up to order 2 in t and 3 in x are continuous. By Theorem 1, for

each N and f(-,.)E P, we only need to find (f cN(.)) satisfying (3.2) - (3.4).

For notational convenience write v cN(-) as v E() in this proof, but we are always

working with the truncated process v (-.

Part 1. Fix f( ') E " Then j

(4 .1) A f(v (t),t) = f tCv (t),t) +
t

+ bN(v£(tl)f,:(V£(t),t) * [F(vE(t)) + - g(s(t)+nC (t)-G(v C(t)))).

Note that for u in any bounded set

I ui(4.2) -Eq (u+n ct)) ^(u)/E - -([P(z(O)>-EU+Cu}-P(z(O)<-u-u+0OCw)/EI

= -/1 + o(a) + 0(c),

which justifies the LE = L/: scaling. We will get f c,N in the formI

f fCIN(t) _ f(VE(t) t) + fC ,N (t) + fCN()

where the f''t () will be defined below.I i

L
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The following estimate will be used.

(4.3) On the set {lz(t)I<l1 or even on {Iz(t)I<ea/ 2 },
-a1 T

IP{z(t+T)C Bjz(t)} - P{z(t+T)( B1 < Ce for some constants C and

a1 > 0, uniformly in B. Similarly, on the same z(t) set and for

T2  > T1 > 0,

Pfz(t+r i)E Bi , i-l,21z(t)} - P{z(ti+t)W Bi i=1,2)<Ce for some

a1 > 0 and C < - and all B1 , B2 .

In the sequel the values of a1 and C may change from usage to usage.

Define g a(u,n (t)) - g (u+n (t)) - Eg (u+n (t)) and define

c,Nt C jf vVc (t) ,t+.TDcN
f = N(t) Lb (v M1 ( )DEIN 9(s(t+ -.)-Gtv (t)),n (t+ ))dT
1 £ N tv ar~

0

= £LbN(V (t)) f,(v£(t),t+c2T)DE C (s(t+E2 T)-G(vE (t))}Z( T)/c)dT
N fjV t ~2

0

Dy (4.3), fcN(t) - O(c) uniformly in w, a,on the set (Jz(t/C 2) <l).

Define w - min(r: e-a-/ 2 z(t/ 2).!l}. Write f£,N( .) as

1 1
fC'N(t) - E F-t  t} d + - .d.

0 w

The first term is bounded in absolute value by cCw1 and the integrand of the

second by C exp -a 1 T. Thus

(4.4) jfCDN(t)l cc(l+lw) CCU + mx(0,ogiz (0) ].

m~i ,-.
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Part 2. It can be verified that fl N(') E O(A'N) and that

E1I~ LbN (yE (t))

(4.5) jeNfcN(t) = W f(v C(t),t)Dgo (s(t)-G(v (t),n (t))

+ E E '-[bN (vC t)) f(vt (t)W, t+n) (v(t)),n(t-) ) ] (t)

0

where the subscript*v denotes the gradient of the bracketed expression with

respect to vC(t). At this point, let us simplify the notation by dropping the

b (v) terms. All of the f CN will be proportional to either b (v E(t)) orN i N

b2(v (t)). Changing variables T/t2 - T and splitting the integral in (4.5)

into two parts and using = bN (v)[s-G(vt)+Dg Q/] (but dropping the b N(v))

I . yields

(.) LJ Et(D'f~ t t ii2)) Dg (s(t+E T)-_G(v L(t)),z(-4rT)/C)
V V oI 2*

0 L

g M (s(t)-G(vt (t))+z(t/C2)/c)dT + O(t)

2f£,N , 2
+ L., JEt (D fv(vc(t),t+c2 T))gov(s(t+c 2)-G(vE(t),z(.--+r)/)D•

jt Vai~

0

g (s(t)-G(vC( t ) ) + z ( t / C 2 )/E)dt + 0(c).

f The terms in (4.6) exist by the same arguments which led to (4.4). We

next show that the second integral of (4.6) is negligible as E 4 0, a 0 0 and

get an estimate which is useful for the tightness argument. The facts that

s(t) and vC (t) are bounded (recall that we are using the truncated process

(3.1)) and that the support of g.,u(u) iuein (-*,a] and that Iga u(U)I _1 C/a

*940 (-) is the derivative of g Ot(0) with respect to its argument. 'The subscript V
C by

denotes the derivative with respect to the explicit argument v: replace v€ (to, take

the derivative with respect to v, then set v - v Ct).
V'



will be used frequently and perhaps without specific mention. Let I(A) denote

the indicator function of the set A.

By (4.3) it can be verified that

(4.7) y E IE N -g , v ( s C z ( -- r/0 1 < (exi -aIT + ITjz(t/Ct3>ea )2 ic/l.

We need a bound on Y which goes to zero as e 0. First we get such a bound j
when Iz(t/C 2)1 > 1. Note that

(4.8) Pils-G(vi+z( t -)/cl _I :s (t/C )=Z0 --o(C)

uniformly for z0 1 > 1 and T > 0 (recall that s, v are in a bounded set -

for each N). Now, (4.8) and the facts cited above (4.7) imply that Y is bounded

by 0(c), uniformly in Iz(t/l 2) l > 1, T > 0. Thus on Iz(t/c 2)I > 1,

(4.9) Y < [exp -a1T + I{jz(t/c 2 )l>eaT/ 2}] c/2C(/)1/2

(use IxI < a, IxI < b 4 IxI < /i ). Thus, on integrating the bound when

Iz(t/C2 )1 > 1, we see that the second term of (4.6) is bounded above by

Cl + max(o, loglz(t/E2 ) )] (E/,)1/2 .

Now, we look for a bound when lz(t/C 2) < 1. Split the second integral in
C

(4.6) into the two parts f + 7. The first part is O(c/a). Note that the
0 C

density of z( -+T), T > C, conditioned on any value of lz(t/c )l in (0,I), is

bounded above by O(1/4). So (4.8) then holds with 0(c) replaced by O(cl/2a).



I
Combining this estimate with (4.7) yields that Y is bounded above by (4.9) whenI iz(t/e 2 1 (/L1/2 is replaced by( 1/4  1/2) in

) <, but with the change that (e/c) 2 israe (E /a

(4.9). Thus, on integrating the bound, we get that the second term of (4.6) is

bounded above by

I
(4.10) cr1 + maxCO, ozt/)1L

I
Part 3. We turn our attention to the first term of (4.6) and show that,

fby an "averaging", it can effectively be replaced by its expectation. To facil-

itate the development, we define the following terms.

2 Ch (v,t,Tp) L D fw (v,t+T+p)D"ga (s(t+'r+p)-G(v)+n (t+t+p))

C vv

I (s(t+p)-G(v)+n (t+p) ,

I H (v,t,l,p) L 2D'f (v,t+ 2T2E 2 p)D-g (s+(tc 2r+c 2p)-G(v)+z(---+T+p)/C)
C

g (s(t+c p)-G(v)+z(- p)/E),

I
(4.11) A0  f(v,t) E EH (V,t,T,O)dT - 3 Eh (v,t,T,O)dr.

00 0

E 0

( f f dp f dT[Et ' Hc(v (t),t,T,p) - EhC(v,tT,P) I ),
2 (t C 2f t v-v C (t)

0 0

I
Go O-

. .. .2 pfdI-% V t , o T [ ou P) -n (v t II T # P)
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where IV implies that v is replaced by vC(t) after taking the expectation.

We must show that f c ") is well defined. First note that the inner integral
2

of f 2N(t) (with p = 0 and a change of variables) is just the first term of
2

(4.6) centered about its expectation. The form of f' -) is chosen to allow
2

us to average out the first term of (4 .0) and to effectively replace it by its

average value A" Nf (v (t),t).
0

By the method used to bound Ifl'N(t)l, we can get that the iner integral

of f 'N(t) exists for each p. Recall the definition w = min{w: eaw/ 2Iz(t/C2) <11
21

and write (4.12) as

d N2 EN B 2 d TEcNB z II + I.df dE t  f f p d t
w 0 0 0

First we show that II is well defined. By (4.3) and the definition of w1 , the

absolute value of the integrand in II is bounded above by C exp -alp, a1 > 0.

Also IEH C(v,tvr,p) S C exp -a1 for some aI > 0. By (4.3) and on the set

{p>w and for C, a1 (whose values again may change from usage to usage)

1E,'H (vtr,p) < E c H (v,t,r,P)l

t C + 2 0

CEC'N [exp -a T + I(e-a/ 2 z(tp) >1)1
_ Et

- C exp -ar + CP{Iz( t P)I.eaT/2t P>W z t/£2

£

C exp -a T + ce-aT/2E{lz(Iz p)Il P>W l9(t/ 2)}

-< C exp -a T.



Chebychev's inequality is used to get the next-to-last inequality. Combining

the above estimates yields that the integrand in II is bounded by (for some a1  0,

C < C exp -a1 (r+p). Hence TI = O(t 2 ).

The term I is also O(c 2 ) but not uniformly in z(t/t2). Bound the inner

I integral of I by

f dTEE, I "N f dT JEEN2 BI -1 111.

I t t t+E 2P0 
0 

I , N t,
By the arguments used to get the bound on f 1f'N(t)I, we get

I
III < Cc E [1 + max(O, loglz( _+) I)I

< Cc 2 E [1"( + loglz( P) I + 1)3.

C

By Jensen's inequality and the concavity of log(-),

III < Cc 2R + log(Iz( )I + C)].

Since w, < C max(O, loglz(t/c2 )1),

(4.13) IfcN(t)l _ CC2 [1 + log(Iz(&)I + C)] 2 .2 2

Henceforth, we will give only an outline of the details, which can all

be filled in via the estimates and techniques developed above. It can be shown

that fc N'0) E !p(AN ) and thatI 2

I

tr
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-c'N',N( neaie£,N £

(4.14) AcNr (t) =negative of first term of (4.6) + A0  f(v(t) ,t)
2 0

+ (terms whose ,-lim equal zero).

The term whose p-li = 0 is just (f2 N(t)),0 (t), where fERN is the gradient2 v 2,v

of the expression for f with respect to the argument vCt). The components

,f AN N which involve f are bounded by 0(). Loosely speaking, thfoA 2 whc nov vvv-

remaining component is of the form

(4.15) 0(1E) + C ([Et c QVc f t, f%, E E+ f t € 'g + Et wvgagja,v fwga, vga

- E fw ga g v]dTdp " gap

where we omit the function arguments. By a method similar to that used to get

(4.13), we get the bound (4.13) on (4.15) but with (c/c) replacing E 2

Part 4. The estimates obtained in Parts 1 - 3 imply that

p-lie IfE(t)-f(v£(t),t)I _ 0,

C00

p-lim IA'Nf ltl-f tl(V t),t) -L a - (stG lt)))o D'If v (V t),t)

A proof very similar to that in (151, Section 6, part 2) yieldl that ACNf(v, t)0

D'v(v,t)D(ln 2)/a uniformly in v for each t. In calculating the limit, the

one of the reasons for the choice cov[:(Ols(t)] - a2exp -&T is to allow u to save

Wek by using this result. The choice allowed an explicit evaluation of the diffi"lo*

tarn. With other choices the diffusion coefficient would be left in an "integrAl fogm 1

n,, -' ..
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G() 90') play no role and the limit (c - 0, a 4 0) is the same as for the

case (a - 0, c * 0). If the b NV) terms were retained, the result would be the

same, except that either b or b would multiply the fVP f or f By what
N N v vvv"

has just been said

(4.16) p-lim jCFNfC'N(t) - ( + A)f(v£(t),t)i 0,

where A is the infinitesimal operator of v(') in (1.2). If b were retained,

NI N
the A in (4.16) would be replaced by some A which would equal A where b (.) - 1,

i.e. in SN. Thus, by Theorem 1, if {v C.) were tight, then the proof would

be completed.

Tightness. Use ([2], Theorem 2).The conditions of Theorem 2 (2] hold if (4.17)

holds for each N and T < a:I __

(4.17) lim lim P(suplj£Nf£ (t) I > i} - 0,
K- £40 t<T

lim P{sup if£.(t)+f N(t)I > S) - 0, each 6 > 0.
C40 t<T

I But (4.17) follows from (4.10), (4.13) (and a similar estimate for (4.15), and

the fact that the Gaussianness and stationarity imply that 4. I T C,

I lim sup CYlz(t/c 2) - 0 w.p. I. Q.E.D.
€-00 t<T

I... Il lm l l il I I II
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FIG.1. THE NONLINEAR SYSTEM
WITH A SATURATOR
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